Overview
The Automated Mineralogy Lab (AML) stands as an exceptional and state-of-the-art petrographic laboratory located at the Center for Integrative Petroleum Research, College of Petroleum Engineering & Geosciences. This advanced facility is equipped with the latest technological advancements in mineralogical analysis, enabling researchers and scientists to delve deep into the intricate composition of rocks, minerals, and geological samples. Utilizing cutting-edge automated systems, the laboratory offers a wide range of capabilities for comprehensive petrographic investigations. The laboratory employs automated mineralogy (AM) techniques, which harness the power of sophisticated instruments and software to rapidly and accurately identify and quantify minerals present in various samples.
AM applications across disciplines
Automated Mineralogy has a wide range of applications in fields such as geology, mineralogy, petrology, mining, and the petroleum industry. It is used for mineral identification and quantification, petrographic analysis, characterization of geological materials, metallurgical analysis, environmental studies, and research and innovation. For instance, see below a demonstration that highlights the capabilities of AM in visualizing and characterizing the mineral phases present in sandstone samples. The laboratory provides valuable insights into the composition and properties of geological samples, aiding in mineral exploration, resource estimation, ore processing, reservoir evaluation, environmental monitoring, and scientific advancements in mineralogy. For more information, you are encouraged to visit the references and publications webpages.
The images above showcase an example of AM techniques applied to sandstone samples. The example includes: (a) a backscattered image captured using a secondary electron microscope (SEM), (b) elemental mapping obtained through energy-dispersive X-ray spectroscopy (EDS), and (c) mineralogical mapping achieved through automated mineralogy analysis. ⓒ AML.
Featured images
- Source: Alqubalee et al., 2023.
- Source: Alqubalee et al., 2023.
AML Instruments
The AML was built to map and quantify minerals for various applications. It has a complete set-up of instruments used in several stages. For instance, for sample preparation, Struers Accutom-50 is used to cut samples, Struers Tegramin-30 for polishing, and Q150T Quorum for carbon coating.
The samples can be thin sections (typically 27 x 46 mm) or polished epoxied plugs (30 mm diameter). For the data acquisition and processing, the AML includes QEMSCAN 650F (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) of FEI (Thermo Fisher Scientific) that is equipped with Quanta x50 FEG microscope, Dual Energy Dispersive X-ray Spectroscopy XFlash 6/30 Detectors of Bruker, multiple Species Identification Protocols (SIP), and several acquisitions and processing software (iMeasure, Esprit 1.9, iDiscover, iExplorer, and Maps).
The SIP files are usually designed to analyze sedimentary, igneous, and metamorphic rocks for various applications. The QEMSCAN 650F is mainly operator-independent, time-efficient, and generates reproducible and statistically valid results. For specific details, the main equipment and setting parameters are given below.
- System: QEMSCAN 650F
- Microscope: Quanta x50 FEG
- Detectors: Dual EDs XFlash 6/30
- Voltage: 15-25 kV
- Current: 10 nA
- Calibration standards: Gold, Copper, Quartz
- Coating machine: Q150T Quorum
- Coating type: Carbon
- Sample types: Thin section (2.50 x 4.50 mm) and epoxified samples (30mm diameter).
QEMSCAN 650f
QUORUM Q150TE
Tegramin-30
Accutom-50
Selected Publications
The list below comprises a selected collection of published articles that have utilized data generated by the AML. The data generated by the AML plays a crucial role in various scientific studies, research papers, and industrial applications related to minerals, ores, and geological materials. If you are interested in obtaining more information about our research activities or if you have any specific inquiries regarding the data generated by the AML, please do not hesitate to contact us at aml@kfupm.edu.sa
- Alqubalee, A. Multi-Scale Reservoir Characterization of Tight Gas Sand: A Case Study from the Paleozoic Glaciogenic Sarah Formation, Rub’ Al-Khali Basin, Saudi Arabia; EAGE Publications BV, 2017. https://doi.org/10.3997/2214-4609.201702466.
- Abdullatif, O.; Osman, M.; Yassin, M.; Makkawi, M.; Al-Farhan, M. Digital Outcrop Analog Reservoir Model of the Miocene Turbidite Sandstones, Midyan Area, Red Sea Region, Saudi Arabia; SPE, 2019. https://doi.org/10.2118/195002-ms.
- Alqubalee, A.; Babalola, L.; Abdullatif, O.; Makkawi, M. Factors Controlling Reservoir Quality of a Paleozoic Tight Sandstone, Rub’ al Khali Basin, Saudi Arabia. Arabian Journal for Science and Engineering 2019, 44 (7), 6489–6507. https://doi.org/10.1007/s13369-019-03885-9.
- Ismanto, A. W.; Chan, S. A.; Babalola, L. O.; Kaminski, M. A.; Al-Ramadan, K. A.; Abdullatif, O. M. Microfacies, Biofacies, and Depositional Environments of the Bajocian–Bathonian Middle Dhruma Carbonates, Central Saudi Arabia. International Journal of Earth Sciences 2019, 108 (8), 2577–2601. https://doi.org/10.1007/s00531-019-01778-8.
- Adebayo, A. R.; Babalola, L.; Hussaini, S. R.; Alqubalee, A.; Babu, R. S. Insight into the Pore Characteristics of a Saudi Arabian Tight Gas Sand Reservoir. Energies 2019, 12 (22), 4302. https://doi.org/10.3390/en12224302.
- Elsayed, M.; Glatz, G.; El-Husseiny, A.; Alqubalee, A.; Adebayo, A.; Al-Garadi, K.; Mahmoud, M. The Effect of Clay Content on the Spin-Spin NMR Relaxation Time Measured in Porous Media. ACS Omega 2020, 5 (12), 6545–6555. https://doi.org/10.1021/acsomega.9b04228.
- Eltom, H. A.; González, L. A.; Alqubalee, A.; Amao, A. O.; Salih, M. Evidence for the Development of a Superpermeability Flow Zone by Bioturbation in Shallow Marine Strata, Upper Jubaila Formation, Central Saudi Arabia. Marine and Petroleum Geology 2020, 120, 104512. https://doi.org/10.1016/j.marpetgeo.2020.104512.
- Abdlmutalib, A.; Abdullatif, O.; Alqubalee, A.; Gonzalez, L.; Humphrey, J. Effects of Lithofacies on Pore System Evolution of Storm-Wave Silt-Rich Fine-Grained Sediments. Early Silurian Qusaiba Member (Qaliba Formation), NW Saudi Arabia. Marine and Petroleum Geology 2021, 128, 105048. https://doi.org/10.1016/j.marpetgeo.2021.105048.
- Alqubalee, A. M.; Babalola, L. O.; Abdullatif, O. M.; Eltom, H. A. Geochemical Characterization of Subsurface Upper Ordovician Glaciogenic Deposits: Implications for Provenance, Tectonic Setting, and Depositional Environments. Arabian Journal for Science and Engineering 2021, 47 (6), 7273–7291. https://doi.org/10.1007/s13369-021-06066-9.
- Elsayed, M.; El-Husseiny, A.; Kadafur, I.; Mahmoud, M.; Aljawad, M. S.; Alqubalee, A. An Experimental Study on the Effect of Magnetic Field Strength and Internal Gradient on NMR-Derived Petrophysical Properties of Sandstones. Journal of Petroleum Science and Engineering 2021, 205, 108811. https://doi.org/10.1016/j.petrol.2021.108811.
- Radwan, O. A.; Humphrey, J. D.; Hakeem, A. S.; Zeama, M. Evaluating Properties of Arabian Desert Sands for Use in Solar Thermal Technologies. Solar Energy Materials and Solar Cells 2021, 231, 111335. https://doi.org/10.1016/j.solmat.2021.111335.
- Abdlmutalib, A.; Abdullatif, O.; Yassin, M. Characteristics and Evolution of Pore Types in Marine Carbonate Mudrocks, Selective Early to Late Jurassic Succession, Central Saudi Arabia. Journal of African Earth Sciences 2021, 184, 104354. https://doi.org/10.1016/j.jafrearsci.2021.104354.
- Bello, A. M.; Al-Ramadan, K.; Koeshidayatullah, A. I.; Amao, A. O.; Herlambang, A.; AlGhamdi, F. M.; Malik, M. H. Impact of Magmatic Intrusion on Diagenesis of Shallow Marine Sandstones: An Example from Qasim Formation, Northwest Saudi Arabia. SSRN Electronic Journal 2022. https://doi.org/10.2139/ssrn.4197997.
- Alam, K.; Abdullatif, O.; El-Husseiny, A.; Babalola, L. Depositional and Diagenetic Controls on Reservoir Heterogeneity and Quality of the Bhuban Formation, Neogene Surma Group, Srikail Gas Field, Bengal Basin, Bangladesh. Journal of Asian Earth Sciences 2022, 223, 104985. https://doi.org/10.1016/j.jseaes.2021.104985.
- Kandil, M. E.; Ali, A.; Khodja, M. R.; Sølling, T. I. Exploring Deep Carbonate Reservoir Samples: Anisotropy and Correlation of Static and Dynamic Young’s Moduli. GEOPHYSICS 2022, 87 (3), MR151–MR159. https://doi.org/10.1190/geo2021-0481.1.
- Afagwu, C.; Mahmoud, M.; Alafnan, S.; Alqubalee, A.; ElHusseiny, A.; Patil, S. Pore Volume Characteristics of Clay-Rich Shale: Critical Insight into the Role of Clay Types, Aluminum and Silicon Concentration. Arabian Journal for Science and Engineering 2022, 47 (9), 12013–12029. https://doi.org/10.1007/s13369-022-06720-w.
- Abdlmutalib, A. J.; Ayranci, K.; Yassin, M. A.; Hussaini, S. R.; Abdullatif, O. A.; Humphrey, J. D. Impact of Sedimentary Fabrics on Small-Scale Permeability Variations within Fine-Grained Sediments: Early Silurian Qusaiba Member, Northern Saudi Arabia. Marine and Petroleum Geology 2022, 139, 105607. https://doi.org/10.1016/j.marpetgeo.2022.105607.
- Alqubalee, A.; Muharrag, J.; Salisu, A. M.; Eltom, H. The Negative Impact of Ophiomorpha on Reservoir Quality of Channelized Deposits in Mixed Carbonate Siliciclastic Setting: The Case Study of the Dam Formation, Saudi Arabia. Marine and Petroleum Geology 2022, 140, 105666. https://doi.org/10.1016/j.marpetgeo.2022.105666.
- El-Husseiny, A.; Eltom, H.; Alqubalee, A.; Abdlmutalib, A.; Al-Mukainah, H.; Syahputra, R. N. Distinct Petroacoustic Signature of Burrow-Related Carbonate Reservoirs: Outcrop Analog Study, Hanifa Formation, Central Saudi Arabia. Natural Resources Research 2022, 31 (5), 2673–2698. https://doi.org/10.1007/s11053-022-10097-w.
- Abouelresh, M. O.; Mahmoud, M.; Radwan, A. E.; Dodd, T. J. H.; Kong, L.; Hassan, H. F. Characterization and Classification of the Microporosity in the Unconventional Carbonate Reservoirs: A Case Study from Hanifa Formation, Jafurah Basin, Saudi Arabia. Marine and Petroleum Geology 2022, 145, 105921. https://doi.org/10.1016/j.marpetgeo.2022.105921.
- Hussain, A.; Butt, M. N.; Olariu, C.; Malik, M. H.; Koeshidayatullah, A.; Amao, A.; Al-Ramadan, K. Unravelling Reservoir Quality Heterogeneity in Mixed Siliciclastic-Carbonate Deposits: An Example from Miocene Red Sea Rift, NW Saudi Arabia. Marine and Petroleum Geology 2022, 145, 105850. https://doi.org/10.1016/j.marpetgeo.2022.105850.
- Albensaad, B.; Chan, S.; Humphrey, J.; Alqubalee, A.; El-Husseiny, A.; Alzayer, Y. Controls on Mechanical Properties of Carbonate Mudstone: Insights from Non-Destructive Techniques and Geochemical Data. 2023. https://doi.org/10.2139/ssrn.4535426.
- Al-Yaseri, A.; Esteban, L.; Yekeen, N.; Giwelli, A.; Sarout, J.; Sarmadivaleh, M. The Effect of Clay on Initial and Residual Saturation of Hydrogen in Clay-Rich Sandstone Formation: Implications for Underground Hydrogen Storage. International Journal of Hydrogen Energy 2023, 48 (13), 5175–5185. https://doi.org/10.1016/j.ijhydene.2022.11.059.
- Isah, A.; Mahmoud, M.; Kamal, M. S.; Arif, M.; Jawad, M. A. Multiscale Wettability Characterization of Anhydrite-Rich Carbonate Rocks: Insights into Zeta Potential, Flotation, and Contact Angle Measurements. SPE Reservoir Evaluation & Engineering 2023, 26 (03), 592–610. https://doi.org/10.2118/214324-pa.
- Bello, A. M.; Al-Ramadan, K.; Babalola, L. O.; Alqubalee, A.; Amao, A. O. Impact of Grain-Coating Illite in Preventing Quartz Cementation: Example from Permo-Carboniferous Sandstone, Central Saudi Arabia. Marine and Petroleum Geology 2023, 149, 106073. https://doi.org/10.1016/j.marpetgeo.2022.106073.
- Bello, A. M.; Butt, M. N.; Hussain, A.; Amao, A. O.; Olariu, C.; Koeshidayatullah, A. I.; Malik, M. H.; Al-Hashem, M.; Al-Ramadan, K. Impact of Depositional and Diagenetic Controls on Reservoir Quality of Syn-Rift Sedimentary Systems: An Example from Oligocene-Miocene Al Wajh Formation, Northwest Saudi Arabia. Sedimentary Geology 2023, 446, 106342. https://doi.org/10.1016/j.sedgeo.2023.106342.
- AlGhamdi, F.; AlQuraishi, A.; Amao, A.; Laboun, A. B.; Abdel Fattah, K.; Kahal, A.; Lashin, A. Depositional Setting, Mineralogical and Diagenetic Implication on Petrophysical Properties of Unconventional Gas Reservoir of the Silurian Qusaiba Formation, Northwestern Arabian Peninsula. Geoenergy Science and Engineering 2023, 223, 211563. https://doi.org/10.1016/j.geoen.2023.211563.
- Alqubalee, A.; Salisu, A. M.; Bello, A. M.; Al-Hussaini, A.; Al-Ramadan, K. Characteristics, Distribution, and Origin of Ferruginous Deposits within the Late Ordovician Glaciogenic Setting of Arabia. Sci Rep 2023, 13 (1), 18430–18430. https://doi.org/10.1038/s41598-023-45563-9.
- Salisu, A. M.; Alqubalee, A.; Bello, A. M.; Al-Hussaini, A.; Adebayo, A. R.; Amao, A. O.; Al-Ramadan, K. Impact of Kaolinite and Iron Oxide Cements on Resistivity and Quality of Low Resistivity Pay Sandstones. Marine and Petroleum Geology 2023, 158, 106568. https://doi.org/10.1016/j.marpetgeo.2023.106568.
- Bello, A. M.; Amao, A.; Alqubalee, A.; Al-Hashem, M.; Albarri, H.; Al-Masrahy, M.; Al-Ramadan, K.; Babalola, L. Diagenetic Controls on Reservoir Porosity of Aeolian and Fluvial Deposits: A Case Study from Permo-Carboniferous Sandstones of Saudi Arabia. AJSE 2024. https://doi.org/10.1007/s13369-023-08590-2.
- Naveed Butt, M.; G. Franks, S.; Hussain, A.; Amao, A. O.; Muhammad Bello, A.; Al-Ramadan, K. Depositional and Diagenetic Controls on the Reservoir Quality of Early Miocene Syn-Rift Deep-Marine Sandstones, NW Saudi Arabia. Journal of Asian Earth Sciences 2024, 259, 105880. https://doi.org/10.1016/j.jseaes.2023.105880.
- El-Ghali, M. A. K.; Shelukhina, O.; Abbasi, I. A.; Moustafa, M. S. H.; Hersi, O. S.; Siddiqui, N. A.; Al-Ramadan, K.; Alqubalee, A.; Bello, A. M.; Amao, A. O. Depositional and Sequence Stratigraphic Controls on Diagenesis in the Upper Cambrian-Lower Ordovician Barik Formation, Central Oman: Implications for Prediction of Reservoir Porosity in a Hybrid-Energy Delta System. Marine and Petroleum Geology 2024, 160, 106611. https://doi.org/10.1016/j.marpetgeo.2023.106611.
Selected theses/dissertations
The list presented here provides theses and dissertations authored by KFUPM master's and Ph.D. students that utilized data generated by the AML. These resources can be accessed via eprints.kfupm.edu.sa. If you require additional information, please don't hesitate to reach out to us at aml@kfupm.edu.sa
- Ismanto, A. Microfacies Analysis of the Bajocian—Bathonian Dhruma Carbonates, Central Saudi Arabia. Master, King Fahd University of Petroleum and Minerals, 2018. https://eprints.kfupm.edu.sa/id/eprint/140765/ (accessed 2023-12-21).
- Alam, K. Reservoir Characteristics of Boka Bil and Bhuban Formations of Neogene Surma Group, Srikail Gas Field, Bengal Basin, Bangladesh. Master, King Fahd University of Petroleum and Minerals, 2019. https://eprints.kfupm.edu.sa/id/eprint/141382/ (accessed 2023-12-21).
- AlZoukani, A. Linking Geological and Petrophysical Data in the Middle Dhruma Formation (Jurassic), Central Saudi Arabia. Master, King Fahd University of Petroleum and Minerals, 2020. https://eprints.kfupm.edu.sa/id/eprint/141503/ (accessed 2023-12-21).
- Islam, M. Reservoir Heterogeneity and Quality Assessment of Late Ordovician Paleovalleys, Sarah Formation, NW Saudi Arabia. Master, King Fahd University of Petroleum and Minerals, 2020. https://eprints.kfupm.edu.sa/id/eprint/141531/ (accessed 2023-12-21).
- Hussain, M. Development of Chemostratigraphy and Chemo-Mechanical Facies Framework in Khuff, Unayzah and Qusaiba Formations, KSA. PhD, King Fahd University of Petroleum and Minerals, 2020. https://eprints.kfupm.edu.sa/id/eprint/141723/ (accessed 2023-12-21).
- Ahmed, S. Diagenetic and Petrophysical Evaluation of the Toarcian Upper Marrat Formation in Central Saudi Arabia. Master, King Fahd University of Petroleum and Minerals, 2021. https://eprints.kfupm.edu.sa/id/eprint/141837/ (accessed 2023-12-21).
- Alabyadh. Microfacies Snd Diagenesis of Late Jurassic - Early Cretaceous Inner Shelf - Oolitic Shoal Deposits of Monte Sacro Sequence (Gargano Promontory, Italy). Master, King Fahd University of Petroleum and Minerals, 2021. https://eprints.kfupm.edu.sa/id/eprint/142000/ (accessed 2023-12-21).
- Khan, P. Diagenetic, Petrophysical, Geochemical and Micro-Paleontological Analysis of Pleistocene-Holocene Cores along The King Fahd Causeway Between Saudi Arabia and Bahrain. Master, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142020/ (accessed 2023-12-21).
- Chan, S. Reservoir Characterization of Unconventional Calcareous Mudstones: Kimmeridgian Jubaila Formation, Jafurah Sub-Basin, Saudi Arabia. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142026/ (accessed 2023-12-21).
- Radwan, O. Evaluating Properties of Arabian Desert Sands for Geological and Energy Applications. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142086/ (accessed 2023-12-21).
- Abdlmutalib, A. Texture, Pore Type, Mechanical, and Natural Fracture Characterization of Paleozoic and Mesozoic Mud Rocks and Shale, Saudi Arabia. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142132/ (accessed 2023-12-21).
- Salih, M. Evaluating Factors Controlling Sonic Velocity in Carbonate Factories. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142182/ (accessed 2023-12-21).
- Bashri, M. Sedimentology, Stratigraphy, and Reservoir Characterization of the Upper Jurassic Hanifa Formation, Central Saudi Arabia. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142190/ (accessed 2023-12-21).
- Argadestya, I. Dynamicity of Volcaniclastics in Fluvial–Coastal–Aeolian Sedimentary Systems: Insights for Mars. Master, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142193/ (accessed 2023-12-21).
- Babker, J. Reservoir Characterization and Reservoir Modeling of the Early Triassic Upper Khartam Member, Khuff Formation: A Pore- to Basin-Scale Investigation. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142239/ (accessed 2023-12-21).
- Naveed, M. Analysis of Syn- and Post-Depositional Controls on Facies Distribution, Depositional Architecture and Reservoir Quality Modifications of Early Syn-Rift Continental Deposits (Early Oligocene – Early Miocene), NW Saudi Arabia. PhD, King Fahd University of Petroleum and Minerals, 2023. https://eprints.kfupm.edu.sa/id/eprint/142292/ (accessed 2023-12-21).
- Afagwu, C. Multiscale Adsorption and Diffusion Studies in Unconventional Shale Gas Reservoirs. PhD, King Fahd University of Petroleum and Minerals, 2023. https://eprints.kfupm.edu.sa/id/eprint/142376/ (accessed 2023-12-21).
Last update: 31-10-2023 13:45
Request
- All CPG students and researchers can request to scan their samples directly through the Laboratory Information Management System (LIMS) installed on their computers or by accessing the following links: https://cpg.kfupm.edu.sa/lims/ or click here. If you don't have an account, you may need to contact cpg-digital@kfupm.edu.sa or call 013-860-2420 and review the CPG policy regarding the use of equipment (only CPG students and researchers).
- To proceed, open LIMS, enter your login details, navigate, and create a booking request. Click on the lab room number and name, (B78 - Room 0005 Automated Mineralogy Laboratory (AML)), complete the remaining information, and click 'OK'. For further information, please contact us via aml@kfupm.edu.sa or call 013-860-5342.
- Other KFUPM students and researchers can request assistance through one of the CIPR research groups or by sending an email to aml@kfupm.edu.sa
References
To learn more about automated mineralogy, we encourage researchers and students to refer to the references below. If you are interested in developing a new workflow or have specific inquiries, the AML welcomes all inquiries through the following email address: aml@kfupm.edu.sa
-
Alqubalee, A., Babalola, L., Abdullatif, O., Makkawi, M., 2019. Factors Controlling Reservoir Quality of a Paleozoic Tight Sandstone, Rub’ al Khali Basin, Saudi Arabia. Arab. J. Sci. Eng. 1–19. https://doi.org/10.1007/s13369-019-03885-9
-
Amao, A.O., Al-Ramadan, K., Koeshidayatullah, A., 2016. Automated mineralogical methodology to study carbonate grain microstructure: an example from oncoids. Environ. Earth Sci. 75. https://doi.org/10.1007/s12665-016-5492-x
-
Ayling, B., Rose, P., Petty, S., Zemach, E., Drakos, P., 2012. QEMSCAN® (Quantitative Evaluation of Minerals by Scanning Electron Microscopy): capability and application to fracture characterization in geothermal systems. Geotherm. Reserv. Eng. Work. 11.
-
Buchmann, M.; Borowski, N.; Leißner, T.; Heinig, T.; Reuter, M.A.; Friedrich, B.; Peuker, U.A. Evaluation of Recyclability of a WEEE Slag by Means of Integrative X-Ray Computer Tomography and SEM-Based Image Analysis. Minerals 2020, 10, 309.
-
Fandrich, R.; Gu, Y.; Burrows, D.; Moeller, K. Modern SEM-based mineral liberation analysis. Int. J. Miner. Process. 2007, 84, 310–320.
-
Fu, C., Du, Y., Song, W., Sang, S., Pan, Z., & Wang, N., 2023. Application of automated mineralogy in petroleum geology and development and CO2 sequestration: A review. Marine and Petroleum Geology, 106206. https://doi.org/10.1016/j.marpetgeo.2023.106206
-
Gäbler, H.-E.; Melcher, F.; Graupner, T.; Bähr, A.; Sitnikova, M.A.; Henjes-Kunst, F.; Oberthür, T.; Brätz, H.; Gerdes, A. Speeding Up the Analytical Workflow for Coltan Fingerprinting by an Integrated Mineral Liberation Analysis/LA-ICP-MS Approach. Geostand. Geoanal. Res. 2011, 35, 431–448.
-
Gottlieb, P.; Wilkie, G.; Sutherland, D.; Ho-Tun, E.; Suthers, S.; Perera, K.; Jenkins, B.; Spencer, S.; Butcher, A.; Rayner, J. Using quantitative electron microscopy for process mineralogy applications. JOM 2000, 52, 24–25.
-
Graham, S.; Keulen, N. Nanoscale Automated Quantitative Mineralogy: A 200-nm Quantitative Mineralogy Assessment of Fault Gouge Using Mineralogic. Minerals 2019, 9, 665.
-
Graham, S.D.; Brough, C.; Cropp, A. An Introduction to ZEISS Mineralogic Mining and the Correlation of Light Microscopy with Automated Mineralogy: A Case Study using BMS and PGM Analysis of Samples from a PGE-bearing Chromite Prospect. In Proceedings of the Precious Metal Conference, Vienna, Austria, 18–20 October 2015; pp. 1–12.
-
Gronen, L.H.; Sindern, S.; Katzmarzyk, J.L.; Bormann, U.; Hellmann, A.; Wotruba, H.; Meyer, F.M. Mineralogical and Chemical Characterization of Zr-REE-Nb Ores from Khalzan Buregtei (Mongolia)—Approaches to More Effcient Extraction of Rare Metals from Alkaline Granitoids. Minerals 2019, 9, 217.
-
Gu, Y. Automated scanning electron microscope based mineral liberation analysis. An introduction to JKMRC/FEI Mineral Liberation Analyser. J. Miner. Mater. Charact. Eng. 2003, 2, 33–41.
-
Guhl, A.C.; Greb, V.-G.; Schulz, B.; Bertau, M. An improved evaluation strategy for ash analysis using scanning electron microscope automated mineralogy. Minerals 2020, 10, 484.
-
Hoal, K.O.; Stammer, J.G.; Appleby, S.K.; Botha, J.; Ross, J.K.; Botha, P.W. Research in quantitative mineralogy: Examples from diverse applications. Miner. Eng. 2009, 22, 402–408.
-
Hrstka, T.; Gottlieb, P.; Skála, R.; Breiter, K.; Motl, D. Automated Mineralogy and Petrology-Applications of TESCAN Integrated Mineral Analyzer (TIMA). J. Geosci. 2018, 63, 47–63.
-
Keulen, N.; Malkki, S.N.; Graham, S. Automated Quantitative Mineralogy Applied to Metamorphic Rocks. Minerals 2020, 10, 47.
-
Knappett, C.; Pirrie, D.; Power, M.R.; Nikolakopoulou, I.; Hilditch, J.; Rollinson, G.K. Mineralogical analysis and provenance of ancient ceramics using automated SEM-EDS analysis (QEMSCAN®): A pilot study on LB I pottery from Akrotiri, Thera. J. Archaeol. Sci. 2011, 38, 219–232.
-
Krolop, P.; Jantschke, A.; Gilbricht, S.; Niiranen, K.; Seifert, T. Mineralogical Imaging for Characterization of the Per Geijer Apatite Iron Ores in the Kiruna District, Northern Sweden: A Comparative Study of Mineral Liberation Analysis and Raman Imaging. Minerals 2019, 9, 544.
-
Lastra, R. Seven practical application cases of liberation analysis. Int. J. Miner. Process. 2007, 84, 337–347.
-
Lougheed, H.D.; McClenaghan, M.B.; Layton-Matthews, D.; Leybourne, M. Exploration Potential of Fine-Fraction Heavy Mineral Concentrates from Till Using Automated Mineralogy: A Case Study from the Izok Lake Cu–Zn–Pb–Ag VMS Deposit, Nunavut, Canada. Minerals 2020, 10, 310.
-
Lund, C.; Lamberg, P.; Lindberg, T. Practical way to quantify minerals from chemical assays at Malmberget iron ore operations—An important tool for the geometallurgical program. Miner. Eng. 2013, 49, 7–16.
-
Mariano, R.A.; Evans, C.L. Error analysis in ore particle composition distribution measurements. Miner. Eng. 2015, 82, 36–44.
-
Minde, M.W.; Zimmermann, U.; Madland, M.V.; Korsnes, R.I.; Schulz, B.; Gilbricht, S. Mineral replacement in long-term flooded porous carbonate rocks. Geochim. Cosmochim. Acta 2020, 268, 485–508.
-
Pietranik, A.; Kierczak, J.; Tyszka, R.; Schulz, B. Understanding heterogeneity of a slag-derived weathered material: The role of automated SEM-EDS analyses. Minerals 2018, 8, 513.
-
Pirrie, D.; Butcher, A.R.; Power, M.R.; Gottlieb, P.; Miller, G.L. Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QemSCAN); potential applications in forensic geoscience. Geol. Soc. London Spec. Publ. 2004, 232, 123–136.
-
Pirrie, D.; Crean, D.E.; Pidduck, A.J.; Nicholls, T.M.; Awbery, R.P.; Shail, R.K. Automated mineralogical profiling of soils as an indicator of local bedrock lithology: A tool for predictive forensic geolocation. Geol. Soc. London Spec. Pub. 2019, 492.
-
Qian, G., Li, Y., Gerson, A.R., 2015. Applications of surface analytical techniques in Earth Sciences. Surf. Sci. Rep. 70, 86–133. https://doi.org/10.1016/j.surfrep.2015.02.001
-
Schulz, B.; Merker, G.; Gutzmer, J. Automated SEM Mineral Liberation Analysis (MLA) with Generically Labelled EDX Spectra in the Mineral Processing of Rare Earth Element Ores. Minerals 2019, 9, 527.
-
Schulz, B.; Sandmann, D.; Gilbricht, S. SEM-Based Automated Mineralogy and its Application in Geo- and Material Sciences. Minerals 2020, 10, 1004.
-
Sylvester, P. Use of the Mineral Liberation Analyzer (MLA) for Mineralogical Studies of Sediments and Sedimentary Rocks. In Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks; Sylvester, P., Ed.; Mineralogical Association of Canada (MAC): St. John’s, NL, Canada, 2012; Volume 42, pp. 1–16.
-
Von Eynatten, H.; Tolosana-Delgado, R.; Karius, V.; Bachmann, K.; Caracciolo, L. Sediment generation in humid Mediterranean setting: Grain-size and source-rock control on sediment geochemistry and mineralogy (Sila Massif, Calabria). Sediment. Geol. 2016, 336, 68–80.]
-
Warlo, M.; Wanhainen, C.; Bark, G.; Butcher, A.R.; McElroy, I.; Brising, D.; Rollinson, G.K. Automated Quantitative Mineralogy Optimized for Simultaneous Detection of (Precious/Critical) Rare Metals and Base Metals in A Production-Focused Environment. Minerals 2019, 9, 440.
-
Worden, R. H., & Utley, J. E., 2022. Automated mineralogy (SEM-EDS) approach to sandstone reservoir quality and diagenesis. Frontiers in Earth Science, 10, 794266. https://doi.org/10.3389/feart.2022.794266
-
Keulen, N., Weibel, R., & Malkki, S. N., 2022. Mineral-specific Quantitative Element Mapping Applied to Visualization of Geochemical Variation in Glauconitic Clasts. Frontiers in Earth Science, 10, 788781. https://doi.org/10.3389/feart.2022.788781
-
Rivera, R.M., Bird, P., Jenkin, G.R.T., Abbott, A. P., 2023. A novel method for extracting metals from asteroids using non-aqueous deep eutectic solvents. Sci Rep 13, 16960. https://doi.org/10.1038/s41598-023-44152-0
Home
Overview
The Automated Mineralogy Lab (AML) stands as an exceptional and state-of-the-art petrographic laboratory located at the Center for Integrative Petroleum Research, College of Petroleum Engineering & Geosciences. This advanced facility is equipped with the latest technological advancements in mineralogical analysis, enabling researchers and scientists to delve deep into the intricate composition of rocks, minerals, and geological samples. Utilizing cutting-edge automated systems, the laboratory offers a wide range of capabilities for comprehensive petrographic investigations. The laboratory employs automated mineralogy (AM) techniques, which harness the power of sophisticated instruments and software to rapidly and accurately identify and quantify minerals present in various samples.
AM applications across disciplines
Automated Mineralogy has a wide range of applications in fields such as geology, mineralogy, petrology, mining, and the petroleum industry. It is used for mineral identification and quantification, petrographic analysis, characterization of geological materials, metallurgical analysis, environmental studies, and research and innovation. For instance, see below a demonstration that highlights the capabilities of AM in visualizing and characterizing the mineral phases present in sandstone samples. The laboratory provides valuable insights into the composition and properties of geological samples, aiding in mineral exploration, resource estimation, ore processing, reservoir evaluation, environmental monitoring, and scientific advancements in mineralogy. For more information, you are encouraged to visit the references and publications webpages.
The images above showcase an example of AM techniques applied to sandstone samples. The example includes: (a) a backscattered image captured using a secondary electron microscope (SEM), (b) elemental mapping obtained through energy-dispersive X-ray spectroscopy (EDS), and (c) mineralogical mapping achieved through automated mineralogy analysis. ⓒ AML.
Featured images
- Source: Alqubalee et al., 2023.
- Source: Alqubalee et al., 2023.
Instrumentation
AML Instruments
The AML was built to map and quantify minerals for various applications. It has a complete set-up of instruments used in several stages. For instance, for sample preparation, Struers Accutom-50 is used to cut samples, Struers Tegramin-30 for polishing, and Q150T Quorum for carbon coating.
The samples can be thin sections (typically 27 x 46 mm) or polished epoxied plugs (30 mm diameter). For the data acquisition and processing, the AML includes QEMSCAN 650F (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) of FEI (Thermo Fisher Scientific) that is equipped with Quanta x50 FEG microscope, Dual Energy Dispersive X-ray Spectroscopy XFlash 6/30 Detectors of Bruker, multiple Species Identification Protocols (SIP), and several acquisitions and processing software (iMeasure, Esprit 1.9, iDiscover, iExplorer, and Maps).
The SIP files are usually designed to analyze sedimentary, igneous, and metamorphic rocks for various applications. The QEMSCAN 650F is mainly operator-independent, time-efficient, and generates reproducible and statistically valid results. For specific details, the main equipment and setting parameters are given below.
- System: QEMSCAN 650F
- Microscope: Quanta x50 FEG
- Detectors: Dual EDs XFlash 6/30
- Voltage: 15-25 kV
- Current: 10 nA
- Calibration standards: Gold, Copper, Quartz
- Coating machine: Q150T Quorum
- Coating type: Carbon
- Sample types: Thin section (2.50 x 4.50 mm) and epoxified samples (30mm diameter).
QEMSCAN 650f
QUORUM Q150TE
Tegramin-30
Accutom-50
Selected Publications
Selected Publications
The list below comprises a selected collection of published articles that have utilized data generated by the AML. The data generated by the AML plays a crucial role in various scientific studies, research papers, and industrial applications related to minerals, ores, and geological materials. If you are interested in obtaining more information about our research activities or if you have any specific inquiries regarding the data generated by the AML, please do not hesitate to contact us at aml@kfupm.edu.sa
- Alqubalee, A. Multi-Scale Reservoir Characterization of Tight Gas Sand: A Case Study from the Paleozoic Glaciogenic Sarah Formation, Rub’ Al-Khali Basin, Saudi Arabia; EAGE Publications BV, 2017. https://doi.org/10.3997/2214-4609.201702466.
- Abdullatif, O.; Osman, M.; Yassin, M.; Makkawi, M.; Al-Farhan, M. Digital Outcrop Analog Reservoir Model of the Miocene Turbidite Sandstones, Midyan Area, Red Sea Region, Saudi Arabia; SPE, 2019. https://doi.org/10.2118/195002-ms.
- Alqubalee, A.; Babalola, L.; Abdullatif, O.; Makkawi, M. Factors Controlling Reservoir Quality of a Paleozoic Tight Sandstone, Rub’ al Khali Basin, Saudi Arabia. Arabian Journal for Science and Engineering 2019, 44 (7), 6489–6507. https://doi.org/10.1007/s13369-019-03885-9.
- Ismanto, A. W.; Chan, S. A.; Babalola, L. O.; Kaminski, M. A.; Al-Ramadan, K. A.; Abdullatif, O. M. Microfacies, Biofacies, and Depositional Environments of the Bajocian–Bathonian Middle Dhruma Carbonates, Central Saudi Arabia. International Journal of Earth Sciences 2019, 108 (8), 2577–2601. https://doi.org/10.1007/s00531-019-01778-8.
- Adebayo, A. R.; Babalola, L.; Hussaini, S. R.; Alqubalee, A.; Babu, R. S. Insight into the Pore Characteristics of a Saudi Arabian Tight Gas Sand Reservoir. Energies 2019, 12 (22), 4302. https://doi.org/10.3390/en12224302.
- Elsayed, M.; Glatz, G.; El-Husseiny, A.; Alqubalee, A.; Adebayo, A.; Al-Garadi, K.; Mahmoud, M. The Effect of Clay Content on the Spin-Spin NMR Relaxation Time Measured in Porous Media. ACS Omega 2020, 5 (12), 6545–6555. https://doi.org/10.1021/acsomega.9b04228.
- Eltom, H. A.; González, L. A.; Alqubalee, A.; Amao, A. O.; Salih, M. Evidence for the Development of a Superpermeability Flow Zone by Bioturbation in Shallow Marine Strata, Upper Jubaila Formation, Central Saudi Arabia. Marine and Petroleum Geology 2020, 120, 104512. https://doi.org/10.1016/j.marpetgeo.2020.104512.
- Abdlmutalib, A.; Abdullatif, O.; Alqubalee, A.; Gonzalez, L.; Humphrey, J. Effects of Lithofacies on Pore System Evolution of Storm-Wave Silt-Rich Fine-Grained Sediments. Early Silurian Qusaiba Member (Qaliba Formation), NW Saudi Arabia. Marine and Petroleum Geology 2021, 128, 105048. https://doi.org/10.1016/j.marpetgeo.2021.105048.
- Alqubalee, A. M.; Babalola, L. O.; Abdullatif, O. M.; Eltom, H. A. Geochemical Characterization of Subsurface Upper Ordovician Glaciogenic Deposits: Implications for Provenance, Tectonic Setting, and Depositional Environments. Arabian Journal for Science and Engineering 2021, 47 (6), 7273–7291. https://doi.org/10.1007/s13369-021-06066-9.
- Elsayed, M.; El-Husseiny, A.; Kadafur, I.; Mahmoud, M.; Aljawad, M. S.; Alqubalee, A. An Experimental Study on the Effect of Magnetic Field Strength and Internal Gradient on NMR-Derived Petrophysical Properties of Sandstones. Journal of Petroleum Science and Engineering 2021, 205, 108811. https://doi.org/10.1016/j.petrol.2021.108811.
- Radwan, O. A.; Humphrey, J. D.; Hakeem, A. S.; Zeama, M. Evaluating Properties of Arabian Desert Sands for Use in Solar Thermal Technologies. Solar Energy Materials and Solar Cells 2021, 231, 111335. https://doi.org/10.1016/j.solmat.2021.111335.
- Abdlmutalib, A.; Abdullatif, O.; Yassin, M. Characteristics and Evolution of Pore Types in Marine Carbonate Mudrocks, Selective Early to Late Jurassic Succession, Central Saudi Arabia. Journal of African Earth Sciences 2021, 184, 104354. https://doi.org/10.1016/j.jafrearsci.2021.104354.
- Bello, A. M.; Al-Ramadan, K.; Koeshidayatullah, A. I.; Amao, A. O.; Herlambang, A.; AlGhamdi, F. M.; Malik, M. H. Impact of Magmatic Intrusion on Diagenesis of Shallow Marine Sandstones: An Example from Qasim Formation, Northwest Saudi Arabia. SSRN Electronic Journal 2022. https://doi.org/10.2139/ssrn.4197997.
- Alam, K.; Abdullatif, O.; El-Husseiny, A.; Babalola, L. Depositional and Diagenetic Controls on Reservoir Heterogeneity and Quality of the Bhuban Formation, Neogene Surma Group, Srikail Gas Field, Bengal Basin, Bangladesh. Journal of Asian Earth Sciences 2022, 223, 104985. https://doi.org/10.1016/j.jseaes.2021.104985.
- Kandil, M. E.; Ali, A.; Khodja, M. R.; Sølling, T. I. Exploring Deep Carbonate Reservoir Samples: Anisotropy and Correlation of Static and Dynamic Young’s Moduli. GEOPHYSICS 2022, 87 (3), MR151–MR159. https://doi.org/10.1190/geo2021-0481.1.
- Afagwu, C.; Mahmoud, M.; Alafnan, S.; Alqubalee, A.; ElHusseiny, A.; Patil, S. Pore Volume Characteristics of Clay-Rich Shale: Critical Insight into the Role of Clay Types, Aluminum and Silicon Concentration. Arabian Journal for Science and Engineering 2022, 47 (9), 12013–12029. https://doi.org/10.1007/s13369-022-06720-w.
- Abdlmutalib, A. J.; Ayranci, K.; Yassin, M. A.; Hussaini, S. R.; Abdullatif, O. A.; Humphrey, J. D. Impact of Sedimentary Fabrics on Small-Scale Permeability Variations within Fine-Grained Sediments: Early Silurian Qusaiba Member, Northern Saudi Arabia. Marine and Petroleum Geology 2022, 139, 105607. https://doi.org/10.1016/j.marpetgeo.2022.105607.
- Alqubalee, A.; Muharrag, J.; Salisu, A. M.; Eltom, H. The Negative Impact of Ophiomorpha on Reservoir Quality of Channelized Deposits in Mixed Carbonate Siliciclastic Setting: The Case Study of the Dam Formation, Saudi Arabia. Marine and Petroleum Geology 2022, 140, 105666. https://doi.org/10.1016/j.marpetgeo.2022.105666.
- El-Husseiny, A.; Eltom, H.; Alqubalee, A.; Abdlmutalib, A.; Al-Mukainah, H.; Syahputra, R. N. Distinct Petroacoustic Signature of Burrow-Related Carbonate Reservoirs: Outcrop Analog Study, Hanifa Formation, Central Saudi Arabia. Natural Resources Research 2022, 31 (5), 2673–2698. https://doi.org/10.1007/s11053-022-10097-w.
- Abouelresh, M. O.; Mahmoud, M.; Radwan, A. E.; Dodd, T. J. H.; Kong, L.; Hassan, H. F. Characterization and Classification of the Microporosity in the Unconventional Carbonate Reservoirs: A Case Study from Hanifa Formation, Jafurah Basin, Saudi Arabia. Marine and Petroleum Geology 2022, 145, 105921. https://doi.org/10.1016/j.marpetgeo.2022.105921.
- Hussain, A.; Butt, M. N.; Olariu, C.; Malik, M. H.; Koeshidayatullah, A.; Amao, A.; Al-Ramadan, K. Unravelling Reservoir Quality Heterogeneity in Mixed Siliciclastic-Carbonate Deposits: An Example from Miocene Red Sea Rift, NW Saudi Arabia. Marine and Petroleum Geology 2022, 145, 105850. https://doi.org/10.1016/j.marpetgeo.2022.105850.
- Albensaad, B.; Chan, S.; Humphrey, J.; Alqubalee, A.; El-Husseiny, A.; Alzayer, Y. Controls on Mechanical Properties of Carbonate Mudstone: Insights from Non-Destructive Techniques and Geochemical Data. 2023. https://doi.org/10.2139/ssrn.4535426.
- Al-Yaseri, A.; Esteban, L.; Yekeen, N.; Giwelli, A.; Sarout, J.; Sarmadivaleh, M. The Effect of Clay on Initial and Residual Saturation of Hydrogen in Clay-Rich Sandstone Formation: Implications for Underground Hydrogen Storage. International Journal of Hydrogen Energy 2023, 48 (13), 5175–5185. https://doi.org/10.1016/j.ijhydene.2022.11.059.
- Isah, A.; Mahmoud, M.; Kamal, M. S.; Arif, M.; Jawad, M. A. Multiscale Wettability Characterization of Anhydrite-Rich Carbonate Rocks: Insights into Zeta Potential, Flotation, and Contact Angle Measurements. SPE Reservoir Evaluation & Engineering 2023, 26 (03), 592–610. https://doi.org/10.2118/214324-pa.
- Bello, A. M.; Al-Ramadan, K.; Babalola, L. O.; Alqubalee, A.; Amao, A. O. Impact of Grain-Coating Illite in Preventing Quartz Cementation: Example from Permo-Carboniferous Sandstone, Central Saudi Arabia. Marine and Petroleum Geology 2023, 149, 106073. https://doi.org/10.1016/j.marpetgeo.2022.106073.
- Bello, A. M.; Butt, M. N.; Hussain, A.; Amao, A. O.; Olariu, C.; Koeshidayatullah, A. I.; Malik, M. H.; Al-Hashem, M.; Al-Ramadan, K. Impact of Depositional and Diagenetic Controls on Reservoir Quality of Syn-Rift Sedimentary Systems: An Example from Oligocene-Miocene Al Wajh Formation, Northwest Saudi Arabia. Sedimentary Geology 2023, 446, 106342. https://doi.org/10.1016/j.sedgeo.2023.106342.
- AlGhamdi, F.; AlQuraishi, A.; Amao, A.; Laboun, A. B.; Abdel Fattah, K.; Kahal, A.; Lashin, A. Depositional Setting, Mineralogical and Diagenetic Implication on Petrophysical Properties of Unconventional Gas Reservoir of the Silurian Qusaiba Formation, Northwestern Arabian Peninsula. Geoenergy Science and Engineering 2023, 223, 211563. https://doi.org/10.1016/j.geoen.2023.211563.
- Alqubalee, A.; Salisu, A. M.; Bello, A. M.; Al-Hussaini, A.; Al-Ramadan, K. Characteristics, Distribution, and Origin of Ferruginous Deposits within the Late Ordovician Glaciogenic Setting of Arabia. Sci Rep 2023, 13 (1), 18430–18430. https://doi.org/10.1038/s41598-023-45563-9.
- Salisu, A. M.; Alqubalee, A.; Bello, A. M.; Al-Hussaini, A.; Adebayo, A. R.; Amao, A. O.; Al-Ramadan, K. Impact of Kaolinite and Iron Oxide Cements on Resistivity and Quality of Low Resistivity Pay Sandstones. Marine and Petroleum Geology 2023, 158, 106568. https://doi.org/10.1016/j.marpetgeo.2023.106568.
- Bello, A. M.; Amao, A.; Alqubalee, A.; Al-Hashem, M.; Albarri, H.; Al-Masrahy, M.; Al-Ramadan, K.; Babalola, L. Diagenetic Controls on Reservoir Porosity of Aeolian and Fluvial Deposits: A Case Study from Permo-Carboniferous Sandstones of Saudi Arabia. AJSE 2024. https://doi.org/10.1007/s13369-023-08590-2.
- Naveed Butt, M.; G. Franks, S.; Hussain, A.; Amao, A. O.; Muhammad Bello, A.; Al-Ramadan, K. Depositional and Diagenetic Controls on the Reservoir Quality of Early Miocene Syn-Rift Deep-Marine Sandstones, NW Saudi Arabia. Journal of Asian Earth Sciences 2024, 259, 105880. https://doi.org/10.1016/j.jseaes.2023.105880.
- El-Ghali, M. A. K.; Shelukhina, O.; Abbasi, I. A.; Moustafa, M. S. H.; Hersi, O. S.; Siddiqui, N. A.; Al-Ramadan, K.; Alqubalee, A.; Bello, A. M.; Amao, A. O. Depositional and Sequence Stratigraphic Controls on Diagenesis in the Upper Cambrian-Lower Ordovician Barik Formation, Central Oman: Implications for Prediction of Reservoir Porosity in a Hybrid-Energy Delta System. Marine and Petroleum Geology 2024, 160, 106611. https://doi.org/10.1016/j.marpetgeo.2023.106611.
Selected theses/dissertations
Selected theses/dissertations
The list presented here provides theses and dissertations authored by KFUPM master's and Ph.D. students that utilized data generated by the AML. These resources can be accessed via eprints.kfupm.edu.sa. If you require additional information, please don't hesitate to reach out to us at aml@kfupm.edu.sa
- Ismanto, A. Microfacies Analysis of the Bajocian—Bathonian Dhruma Carbonates, Central Saudi Arabia. Master, King Fahd University of Petroleum and Minerals, 2018. https://eprints.kfupm.edu.sa/id/eprint/140765/ (accessed 2023-12-21).
- Alam, K. Reservoir Characteristics of Boka Bil and Bhuban Formations of Neogene Surma Group, Srikail Gas Field, Bengal Basin, Bangladesh. Master, King Fahd University of Petroleum and Minerals, 2019. https://eprints.kfupm.edu.sa/id/eprint/141382/ (accessed 2023-12-21).
- AlZoukani, A. Linking Geological and Petrophysical Data in the Middle Dhruma Formation (Jurassic), Central Saudi Arabia. Master, King Fahd University of Petroleum and Minerals, 2020. https://eprints.kfupm.edu.sa/id/eprint/141503/ (accessed 2023-12-21).
- Islam, M. Reservoir Heterogeneity and Quality Assessment of Late Ordovician Paleovalleys, Sarah Formation, NW Saudi Arabia. Master, King Fahd University of Petroleum and Minerals, 2020. https://eprints.kfupm.edu.sa/id/eprint/141531/ (accessed 2023-12-21).
- Hussain, M. Development of Chemostratigraphy and Chemo-Mechanical Facies Framework in Khuff, Unayzah and Qusaiba Formations, KSA. PhD, King Fahd University of Petroleum and Minerals, 2020. https://eprints.kfupm.edu.sa/id/eprint/141723/ (accessed 2023-12-21).
- Ahmed, S. Diagenetic and Petrophysical Evaluation of the Toarcian Upper Marrat Formation in Central Saudi Arabia. Master, King Fahd University of Petroleum and Minerals, 2021. https://eprints.kfupm.edu.sa/id/eprint/141837/ (accessed 2023-12-21).
- Alabyadh. Microfacies Snd Diagenesis of Late Jurassic - Early Cretaceous Inner Shelf - Oolitic Shoal Deposits of Monte Sacro Sequence (Gargano Promontory, Italy). Master, King Fahd University of Petroleum and Minerals, 2021. https://eprints.kfupm.edu.sa/id/eprint/142000/ (accessed 2023-12-21).
- Khan, P. Diagenetic, Petrophysical, Geochemical and Micro-Paleontological Analysis of Pleistocene-Holocene Cores along The King Fahd Causeway Between Saudi Arabia and Bahrain. Master, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142020/ (accessed 2023-12-21).
- Chan, S. Reservoir Characterization of Unconventional Calcareous Mudstones: Kimmeridgian Jubaila Formation, Jafurah Sub-Basin, Saudi Arabia. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142026/ (accessed 2023-12-21).
- Radwan, O. Evaluating Properties of Arabian Desert Sands for Geological and Energy Applications. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142086/ (accessed 2023-12-21).
- Abdlmutalib, A. Texture, Pore Type, Mechanical, and Natural Fracture Characterization of Paleozoic and Mesozoic Mud Rocks and Shale, Saudi Arabia. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142132/ (accessed 2023-12-21).
- Salih, M. Evaluating Factors Controlling Sonic Velocity in Carbonate Factories. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142182/ (accessed 2023-12-21).
- Bashri, M. Sedimentology, Stratigraphy, and Reservoir Characterization of the Upper Jurassic Hanifa Formation, Central Saudi Arabia. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142190/ (accessed 2023-12-21).
- Argadestya, I. Dynamicity of Volcaniclastics in Fluvial–Coastal–Aeolian Sedimentary Systems: Insights for Mars. Master, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142193/ (accessed 2023-12-21).
- Babker, J. Reservoir Characterization and Reservoir Modeling of the Early Triassic Upper Khartam Member, Khuff Formation: A Pore- to Basin-Scale Investigation. PhD, King Fahd University of Petroleum and Minerals, 2022. https://eprints.kfupm.edu.sa/id/eprint/142239/ (accessed 2023-12-21).
- Naveed, M. Analysis of Syn- and Post-Depositional Controls on Facies Distribution, Depositional Architecture and Reservoir Quality Modifications of Early Syn-Rift Continental Deposits (Early Oligocene – Early Miocene), NW Saudi Arabia. PhD, King Fahd University of Petroleum and Minerals, 2023. https://eprints.kfupm.edu.sa/id/eprint/142292/ (accessed 2023-12-21).
- Afagwu, C. Multiscale Adsorption and Diffusion Studies in Unconventional Shale Gas Reservoirs. PhD, King Fahd University of Petroleum and Minerals, 2023. https://eprints.kfupm.edu.sa/id/eprint/142376/ (accessed 2023-12-21).
Last update: 31-10-2023 13:45
Request
Request
- All CPG students and researchers can request to scan their samples directly through the Laboratory Information Management System (LIMS) installed on their computers or by accessing the following links: https://cpg.kfupm.edu.sa/lims/ or click here. If you don't have an account, you may need to contact cpg-digital@kfupm.edu.sa or call 013-860-2420 and review the CPG policy regarding the use of equipment (only CPG students and researchers).
- To proceed, open LIMS, enter your login details, navigate, and create a booking request. Click on the lab room number and name, (B78 - Room 0005 Automated Mineralogy Laboratory (AML)), complete the remaining information, and click 'OK'. For further information, please contact us via aml@kfupm.edu.sa or call 013-860-5342.
- Other KFUPM students and researchers can request assistance through one of the CIPR research groups or by sending an email to aml@kfupm.edu.sa
References
References
To learn more about automated mineralogy, we encourage researchers and students to refer to the references below. If you are interested in developing a new workflow or have specific inquiries, the AML welcomes all inquiries through the following email address: aml@kfupm.edu.sa
-
Alqubalee, A., Babalola, L., Abdullatif, O., Makkawi, M., 2019. Factors Controlling Reservoir Quality of a Paleozoic Tight Sandstone, Rub’ al Khali Basin, Saudi Arabia. Arab. J. Sci. Eng. 1–19. https://doi.org/10.1007/s13369-019-03885-9
-
Amao, A.O., Al-Ramadan, K., Koeshidayatullah, A., 2016. Automated mineralogical methodology to study carbonate grain microstructure: an example from oncoids. Environ. Earth Sci. 75. https://doi.org/10.1007/s12665-016-5492-x
-
Ayling, B., Rose, P., Petty, S., Zemach, E., Drakos, P., 2012. QEMSCAN® (Quantitative Evaluation of Minerals by Scanning Electron Microscopy): capability and application to fracture characterization in geothermal systems. Geotherm. Reserv. Eng. Work. 11.
-
Buchmann, M.; Borowski, N.; Leißner, T.; Heinig, T.; Reuter, M.A.; Friedrich, B.; Peuker, U.A. Evaluation of Recyclability of a WEEE Slag by Means of Integrative X-Ray Computer Tomography and SEM-Based Image Analysis. Minerals 2020, 10, 309.
-
Fandrich, R.; Gu, Y.; Burrows, D.; Moeller, K. Modern SEM-based mineral liberation analysis. Int. J. Miner. Process. 2007, 84, 310–320.
-
Fu, C., Du, Y., Song, W., Sang, S., Pan, Z., & Wang, N., 2023. Application of automated mineralogy in petroleum geology and development and CO2 sequestration: A review. Marine and Petroleum Geology, 106206. https://doi.org/10.1016/j.marpetgeo.2023.106206
-
Gäbler, H.-E.; Melcher, F.; Graupner, T.; Bähr, A.; Sitnikova, M.A.; Henjes-Kunst, F.; Oberthür, T.; Brätz, H.; Gerdes, A. Speeding Up the Analytical Workflow for Coltan Fingerprinting by an Integrated Mineral Liberation Analysis/LA-ICP-MS Approach. Geostand. Geoanal. Res. 2011, 35, 431–448.
-
Gottlieb, P.; Wilkie, G.; Sutherland, D.; Ho-Tun, E.; Suthers, S.; Perera, K.; Jenkins, B.; Spencer, S.; Butcher, A.; Rayner, J. Using quantitative electron microscopy for process mineralogy applications. JOM 2000, 52, 24–25.
-
Graham, S.; Keulen, N. Nanoscale Automated Quantitative Mineralogy: A 200-nm Quantitative Mineralogy Assessment of Fault Gouge Using Mineralogic. Minerals 2019, 9, 665.
-
Graham, S.D.; Brough, C.; Cropp, A. An Introduction to ZEISS Mineralogic Mining and the Correlation of Light Microscopy with Automated Mineralogy: A Case Study using BMS and PGM Analysis of Samples from a PGE-bearing Chromite Prospect. In Proceedings of the Precious Metal Conference, Vienna, Austria, 18–20 October 2015; pp. 1–12.
-
Gronen, L.H.; Sindern, S.; Katzmarzyk, J.L.; Bormann, U.; Hellmann, A.; Wotruba, H.; Meyer, F.M. Mineralogical and Chemical Characterization of Zr-REE-Nb Ores from Khalzan Buregtei (Mongolia)—Approaches to More Effcient Extraction of Rare Metals from Alkaline Granitoids. Minerals 2019, 9, 217.
-
Gu, Y. Automated scanning electron microscope based mineral liberation analysis. An introduction to JKMRC/FEI Mineral Liberation Analyser. J. Miner. Mater. Charact. Eng. 2003, 2, 33–41.
-
Guhl, A.C.; Greb, V.-G.; Schulz, B.; Bertau, M. An improved evaluation strategy for ash analysis using scanning electron microscope automated mineralogy. Minerals 2020, 10, 484.
-
Hoal, K.O.; Stammer, J.G.; Appleby, S.K.; Botha, J.; Ross, J.K.; Botha, P.W. Research in quantitative mineralogy: Examples from diverse applications. Miner. Eng. 2009, 22, 402–408.
-
Hrstka, T.; Gottlieb, P.; Skála, R.; Breiter, K.; Motl, D. Automated Mineralogy and Petrology-Applications of TESCAN Integrated Mineral Analyzer (TIMA). J. Geosci. 2018, 63, 47–63.
-
Keulen, N.; Malkki, S.N.; Graham, S. Automated Quantitative Mineralogy Applied to Metamorphic Rocks. Minerals 2020, 10, 47.
-
Knappett, C.; Pirrie, D.; Power, M.R.; Nikolakopoulou, I.; Hilditch, J.; Rollinson, G.K. Mineralogical analysis and provenance of ancient ceramics using automated SEM-EDS analysis (QEMSCAN®): A pilot study on LB I pottery from Akrotiri, Thera. J. Archaeol. Sci. 2011, 38, 219–232.
-
Krolop, P.; Jantschke, A.; Gilbricht, S.; Niiranen, K.; Seifert, T. Mineralogical Imaging for Characterization of the Per Geijer Apatite Iron Ores in the Kiruna District, Northern Sweden: A Comparative Study of Mineral Liberation Analysis and Raman Imaging. Minerals 2019, 9, 544.
-
Lastra, R. Seven practical application cases of liberation analysis. Int. J. Miner. Process. 2007, 84, 337–347.
-
Lougheed, H.D.; McClenaghan, M.B.; Layton-Matthews, D.; Leybourne, M. Exploration Potential of Fine-Fraction Heavy Mineral Concentrates from Till Using Automated Mineralogy: A Case Study from the Izok Lake Cu–Zn–Pb–Ag VMS Deposit, Nunavut, Canada. Minerals 2020, 10, 310.
-
Lund, C.; Lamberg, P.; Lindberg, T. Practical way to quantify minerals from chemical assays at Malmberget iron ore operations—An important tool for the geometallurgical program. Miner. Eng. 2013, 49, 7–16.
-
Mariano, R.A.; Evans, C.L. Error analysis in ore particle composition distribution measurements. Miner. Eng. 2015, 82, 36–44.
-
Minde, M.W.; Zimmermann, U.; Madland, M.V.; Korsnes, R.I.; Schulz, B.; Gilbricht, S. Mineral replacement in long-term flooded porous carbonate rocks. Geochim. Cosmochim. Acta 2020, 268, 485–508.
-
Pietranik, A.; Kierczak, J.; Tyszka, R.; Schulz, B. Understanding heterogeneity of a slag-derived weathered material: The role of automated SEM-EDS analyses. Minerals 2018, 8, 513.
-
Pirrie, D.; Butcher, A.R.; Power, M.R.; Gottlieb, P.; Miller, G.L. Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QemSCAN); potential applications in forensic geoscience. Geol. Soc. London Spec. Publ. 2004, 232, 123–136.
-
Pirrie, D.; Crean, D.E.; Pidduck, A.J.; Nicholls, T.M.; Awbery, R.P.; Shail, R.K. Automated mineralogical profiling of soils as an indicator of local bedrock lithology: A tool for predictive forensic geolocation. Geol. Soc. London Spec. Pub. 2019, 492.
-
Qian, G., Li, Y., Gerson, A.R., 2015. Applications of surface analytical techniques in Earth Sciences. Surf. Sci. Rep. 70, 86–133. https://doi.org/10.1016/j.surfrep.2015.02.001
-
Schulz, B.; Merker, G.; Gutzmer, J. Automated SEM Mineral Liberation Analysis (MLA) with Generically Labelled EDX Spectra in the Mineral Processing of Rare Earth Element Ores. Minerals 2019, 9, 527.
-
Schulz, B.; Sandmann, D.; Gilbricht, S. SEM-Based Automated Mineralogy and its Application in Geo- and Material Sciences. Minerals 2020, 10, 1004.
-
Sylvester, P. Use of the Mineral Liberation Analyzer (MLA) for Mineralogical Studies of Sediments and Sedimentary Rocks. In Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks; Sylvester, P., Ed.; Mineralogical Association of Canada (MAC): St. John’s, NL, Canada, 2012; Volume 42, pp. 1–16.
-
Von Eynatten, H.; Tolosana-Delgado, R.; Karius, V.; Bachmann, K.; Caracciolo, L. Sediment generation in humid Mediterranean setting: Grain-size and source-rock control on sediment geochemistry and mineralogy (Sila Massif, Calabria). Sediment. Geol. 2016, 336, 68–80.]
-
Warlo, M.; Wanhainen, C.; Bark, G.; Butcher, A.R.; McElroy, I.; Brising, D.; Rollinson, G.K. Automated Quantitative Mineralogy Optimized for Simultaneous Detection of (Precious/Critical) Rare Metals and Base Metals in A Production-Focused Environment. Minerals 2019, 9, 440.
-
Worden, R. H., & Utley, J. E., 2022. Automated mineralogy (SEM-EDS) approach to sandstone reservoir quality and diagenesis. Frontiers in Earth Science, 10, 794266. https://doi.org/10.3389/feart.2022.794266
-
Keulen, N., Weibel, R., & Malkki, S. N., 2022. Mineral-specific Quantitative Element Mapping Applied to Visualization of Geochemical Variation in Glauconitic Clasts. Frontiers in Earth Science, 10, 788781. https://doi.org/10.3389/feart.2022.788781
-
Rivera, R.M., Bird, P., Jenkin, G.R.T., Abbott, A. P., 2023. A novel method for extracting metals from asteroids using non-aqueous deep eutectic solvents. Sci Rep 13, 16960. https://doi.org/10.1038/s41598-023-44152-0